Mark Scheme (Results)

October 2017

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2017
Publications Code WST02_01_1710_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
2(a)	$\begin{aligned} k \int_{2}^{10}\left(12 s-20-s^{2}\right) \mathrm{d} s[& =1] \\ k\left[6 s^{2}-20 s-\frac{s^{3}}{3}\right]_{2}^{10}[& =1] \\ k\left(\frac{200}{3}+\frac{56}{3}\right) & =1 \\ \frac{256}{3} k & =1 \\ k & =\frac{3}{256} \end{aligned}$		M1
			A1
			dM1
			A1cso
(b)	$\mathrm{E}(S)=6{ }_{10}$		B1 \quad(1)
(c)	$\begin{aligned} \mathrm{E}\left(S^{2}\right) & =k \int_{2}\left(12 s^{3}-20 s^{2}-s^{4}\right) \mathrm{d} s \\ & =\frac{3}{256}\left[3 s^{4}-\frac{20 s^{3}}{3}-\frac{s^{5}}{5}\right]_{2}^{10} \\ & =39.2 \end{aligned}$		M1
			A1ft
	$\begin{aligned} & \operatorname{Var}(S)=39.2-6^{2}=3.2 \\ & \text { s.d }(S)=\sqrt{3.2}=1.7888 \end{aligned}$		M1 dM1 A1
	\therefore standard deviation $=£ 1788.85$	awrt $\underline{\mathbf{£ 1 7 9 0}}$	A1ft
(d)	$\begin{aligned} & \frac{3}{256} \int_{7.1}^{10}\left(12 s-20-s^{2}\right) \mathrm{d} s \\ & \quad=0.2989=0.3(1 \mathrm{dp}) \end{aligned}$		
			M1
			A1
(e)	$\begin{aligned} & \mathrm{P}(X \leq 5)=0.8822 \\ & \begin{aligned} \mathrm{P}(5<X \leq 6) & =\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 5) \\ & =0.9614-0.8822 \\ & =\text { awrt } 0.079 \end{aligned} \end{aligned}$		
			M1
			A1ft
	$\mathrm{P}(6<X \leq 12)=1-\mathrm{P}(X \leq 6)=0.0386$		M1
	$\begin{aligned} \text { Bonus earnt }=1000 & \times 0.0792+5000 \times 0.0386 \\ & =£ 79.20+£ 193.00 \\ & =£ 272.20 \end{aligned}$		M1
		awrt £270	A1
			(5)
			Total 18

	Notes
2(a)	M1: attempting to integrate, at least one integral $s^{n} \rightarrow s^{n+1}$, ignore limits and does not need to be put equal to 1 A1: correct integration, ignore limits and does not need to be set equal to 1 M1: dependent on first M being awarded, use of both limits and setting equal to 1 Must see an intermediate line of working for this M1 mark to be scored A1 cso (condone use of x instead of s, condone missing $\mathrm{d} s$, etc.)
(b)	Ignore (£)6000 if 6 is seen
(c)	M1 attempting to integrate s^{2} their $\mathrm{f}(s)^{\prime} \quad k \int_{2}^{10}\left(12 s^{3}-20 s^{2}-s^{4}\right) \mathrm{d} s . s^{n} \rightarrow s^{n+1}$ A1 ft correct integration (or correct ft integration of s^{2} their $\mathrm{f}(s)$) M1 using $\mathrm{E}\left(S^{2}\right)-[\mathrm{E}(S)]^{2}$ M1 dependent upon previous M1 for square rooting $\operatorname{Var}(S)(\operatorname{Var}(S)$ must be $>0)$ A1 awrt 1.79 (allow exact equivalent) A1ft awrt 1790 (dependent on all method marks scored for $1000 \times$ their s.d.)
(d)	M1 correct expression and attempt to integrate with correct limits (ft their $\mathrm{f}(\mathrm{s})$) $\frac{3}{256} \int_{7.1}^{10}\left(12 s-20-s^{2}\right) \mathrm{d} s$ or $1-\frac{3}{256} \int_{2}^{7.1}\left(12 s-20-s^{2}\right) \mathrm{d} s$ A1 awrt 0.3
(e)	M1 Writing or using $\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 5)$ or a correct expression for $\mathrm{P}(X=6)$ i.e. 12C6('their (d)') $)^{6}(1-\text { 'their(d)' })^{6}$ where $X \sim \mathrm{~B}(12$, "their ans to (d)") A1ft awrt 0.079 (allow f.t. their answer to (d)) M1 Writing or using $1-\mathrm{P}(X \leq 6)$, where $X \sim \mathrm{~B}(12$, "their ans to (d)") M1 $1000 \times$ "their $0.0792 "+5000 \times$ "their 0.0386 " A1 awrt £270 (2sf)
	NB if they use 0.2989 they can gain full marks. M1: $\mathrm{P}(X=6)=\binom{12}{6}(0.2989)^{6}(1-0.2989)^{6}$ A1: $\quad=0.078254 \ldots$ awrt 0.078
	$\begin{aligned} & \text { M1: } \begin{aligned} \mathrm{P}(6<X \leq 12) & =1-\mathrm{P}(X \leq 6)=0.0378589 \ldots \\ \text { M1: Bonus earnt } & =1000 \times 0.078254 \ldots+5000 \times 0.0378589 \ldots \\ & =£ 78.25+£ 189.29 \\ & =£ 267.54(\text { allow } 267.55) \quad \text { awrt } £ 270 \end{aligned} \end{aligned}$

Question Number	Scheme	Marks
6	$X \sim \mathrm{~N}\left(\frac{1}{6} n, \frac{5}{36} n\right)$	M1A1
	$\mathrm{P}(X<50)=\mathrm{P}\left(Z<\frac{49.5-\frac{1}{6} n}{\sqrt{\frac{5}{36} n}}\right)$	M1 dM1
	$\frac{49.5-\frac{1}{6} n}{\sqrt{\frac{5}{36} n}}=-2.4$	M1 A1
	$49.5-\frac{1}{6} n=-2.4 \frac{\sqrt{5 n}}{6}$	
	$n-2.4 \sqrt{5} \sqrt{n}-297=0$	M1 A1
	$\begin{aligned} \sqrt{n} & =\frac{2.4 \sqrt{5} \pm \sqrt{(2.4 \sqrt{5})^{2}+4 \times 297}}{2} \\ & =9 \sqrt{5} \text { or awrt } 20.1 \end{aligned}$	M1
	$n=405$ only	A1cao
	Notes	Total 10
	M1 Using Normal with mean $\frac{1}{6} n$ A1 Using Normal with mean and Var correct $\mathrm{M} 1 \pm\left(\frac{(48.5 \text { or } 49 \text { or } 49.5 \text { or } 50 \text { or } 50.5)-\text { their mean }}{\text { their } s d}\right)$ M1 dep on previous M1 being awarded for using a continuity correction 49 ± 0.5 or 50 ± 0.5 M1 setting $\frac{(48.5 \text { or } 49 \text { or } 49.5 \text { or } 50 \text { or } 50.5)-\text { their mean }}{\text { their sd }}=z$ value $\|z\|>2$ A1 A correct equation with compatible signs with z value awrt 2.4 M1 rearranging to get a 3 TQ in \sqrt{n} or n A1 for a correct 3TQ equation in \sqrt{n} or n e.g. $n-2 \cdot 4 \sqrt{5} \sqrt{n}-297=0$ M1 Solving (allow one slip in an expression) their 3TQ leading to $\sqrt{n}=0$ e.g. $\sqrt{n}=\frac{2.4 \sqrt{5} \pm \sqrt{(2.4 \sqrt{5})^{2}+4 \times 297}}{2}$ or $9 \sqrt{5}$ or awrt 20.1 A1 cao with all previous marks scored.	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

